Emergence of transient domain wall skyrmions after ultrafast demagnetization
نویسندگان
چکیده
منابع مشابه
Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls
During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use fe...
متن کاملIndirect excitation of ultrafast demagnetization
Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR ...
متن کاملLaser-induced ultrafast demagnetization in ferromagnetic metals.
The laser-induced femtosecond demagnetization in ferromagnetic metals is investigated theoretically. Different from the conventional nanosecond one, this ultrafast demagnetization is a cooperative effect of the external laser field and the internal spin-orbit coupling. The spin-orbit coupling smears out the original identities of triplets and singlets while the laser field uses it as an avenue ...
متن کاملUltrafast optical excitation of magnetic skyrmions
Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a disti...
متن کاملLaser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network.
Femtosecond magnetization phenomena have been challenging our understanding for over a decade. Most experiments have relied on infrared femtosecond lasers, limiting the spatial resolution to a few micrometres. With the advent of femtosecond X-ray sources, nanometric resolution can now be reached, which matches key length scales in femtomagnetism such as the travelling length of excited 'hot' el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2020
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.102.094402